数据采集器工作原理是什么?
发布日期:2016-07-27 浏览次数:7079
在计算机广泛应用的今天,数据采集的重要性是十分显著的。它是计算机与外部物理世界连接的桥梁。又分为条码数据采集器、无线数据采集器等等,各种类型信号采集的难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。虽然数据采集已经普及,但很多人并不知道其工作原理,今天就来为大家科普一下
数据采集器工作原理。
采样频率、抗混叠滤波器和样本数
假设现在对一个模拟信号 x(t) 每隔Δt时间采样一次。时间间隔Δt被称为采样间隔或者采样周期。它的倒数 1/Δt被称为采样频率,单位是采样数/每秒。t="0", Δt,2 Δt,3 Δt ...... 等等,x(t) 的数值就被称为采样值。所有x(0),xΔt),x(2Δt)都是采样值。下图显示了一个模拟信号和它采样后的采样值。样间隔是Δt,注意,采样点在时域上是分散的。
模拟信号和采样显示
这个数列被称为信号x(t)的数字化显示或者采样显示。注意这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或Δt)的信息。所以如果只知道该信号的采样值,并不能知道它的采样率,缺少了时间尺度,也不可能知道信号x(t)的频率。根据采样定理,更低采样频率必须是信号频率的两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变的更大频率叫做奈奎斯特频率,它是采样频率的一半。如果信号中包含频率高于奈奎斯特频率的成分,信号将在直流和奈奎斯特频率之间畸变。
采样率过低的结果是还原的信号的频率看上去与原始信号不同。这种信号畸变叫做混叠(alias)。出现的混频偏差(alias frequency)是输入信号的频率和最靠近的采样率整数倍的差的绝。对值。
通常,信号采集后都要去做适当的信号处理,例如FFT等。这里对样本数又有一个要求,一般不能只提供一个信号周期的数据样本,希望有5~10个周期,甚至更多的样本。并且希望所提供的样本总数是整周期个数的。这里又发生一个困难,有时我们并不知道,或不确切知道被采信号的频率,因此不但采样率不一定是信号频率的整倍数,也不能保证提供整周期数的样本。我们所有的仅仅是一个时间序列的离散的函数x(n)和采样频率。这是测量与分析的唯①依据。
看了这一连串的专业术语,相信不少人已经脑袋发昏了,此篇文章只为给大家科普一下,有兴趣的可以到
上海途腾的官网去详细咨询。